Sol-Gel Synthesis and Characterization of Co-Mo/Silica Catalysts for Single-Walled Carbon Nanotube Production

نویسندگان

  • Veronica M. Irurzun
  • Yongqiang Tan
  • Daniel E. Resasco
چکیده

A series of silica-supported Co-Mo samples prepared by the sol-gel method has been compared as catalysts for the synthesis of single-walled carbon nanotubes (SWNT). The concentration ratio of ammonium hydroxide to the silica precursor tetraethoxysilane (TEOS) has an important effect on the resulting morphology of the silica support and, consequently, on the nature of the Co-Mo catalytic species. In turn, these morphology changes have significant effects on carbon yield, quality, and type of the single-walled carbon nanotubes obtained by the disproportionation of CO at 750 °C. In addition, a catalyst with an open microscale structure has been prepared by using carbon fibers as burnable sacrificial templates. This open structure results in several-fold enhanced carbon yield, while keeping the same nanotube quality as those obtained on conventional powder catalysts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and Characterization of SiO2-Carbon Nanotube Hybrides Using a Sol-Gel Method

This work is focused on synthesis of SiO2- CNT hybrides via sol-gel method. Homogeneous distribution of carbon nanotubes within silicon matrix was obtained by mixing the functionalized carbon nanotube (CNTCOOH) with active silicic acid followed by titration to the solution of sodium silicate (Na2SiO3) under the average temperature condition of 80?C. Different ratios of multi-walled carbon nanot...

متن کامل

Unravelling the mechanisms behind mixed catalysts for the high yield production of single-walled carbon nanotubes.

The use of mixed catalysts for the high-yield production of single-walled carbon nanotubes is well-known. The mechanisms behind the improved yield are poorly understood. In this study, we systematically explore different catalyst combinations from Ni, Co, and Mo for the synthesis of carbon nanotubes via laser evaporation. Our findings reveal that the mixing of catalysts alters the catalyst clus...

متن کامل

KCl Promoted Cobalt-iron Nanocatalysts Supported on Silica: Catalytic Performance and Characterization in Fischer-Tropsch Synthesis

The SiO2 supported cobalt-iron nano catalysts were prepared by the sol-gel method. This research investigated the effects of (Co/Fe) wt.%, different Co/Fe ratio at different temperature and loading of KCl wt.% for Fisher-Tropsch synthesis (FTS). The results were showed that the catalyst containing 50 wt.% (Co/Fe)/SiO2 (Co/Fe ratio is 70/30) which promoted with 0.6 wt.% KCl is an optimal nano ca...

متن کامل

Relationship between the Structure/Composition of Co–Mo Catalystsand Their Ability to Produce Single-Walled Carbon Nanotubesby CO Disproportionation

A series of analytical techniques have been employed to fully characterize the structure and chemical state of Co–Mo/SiO2 catalysts used for the production of single-walled carbon nanotubes (SWNT) by CO disproportionation at 700–850◦C. The state of Co and Mo on a series of silica-supported catalysts was investigated using extended X-ray absorption fine structure, X-ray absorption near-edge spec...

متن کامل

Synthesis and characterization of functionalized single - walled carbon nanotube/ chitosan/polyaniline nanocomposite

In this work the synthesis of polyaniline/chitosan/functionalized single- walled carbon nanotube nanocomposite is carried out. For this purpose single -walled carbon nanotubes were reacted with thionyl chloride to change the hydroxyl to acyl chloride groups for improving the react ability. In other step, aniline monomers and chitosan were polymerized in the presence of Iron (III) chloride to sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009